Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 17, 2026
-
We consider a generalization of the Bernoulli free boundary problem where the underlying differential operator is a nonlocal, non-translation-invariant elliptic operator of order . Because of the lack of translation invariance, the Caffarelli-Silvestre extension is unavailable, and we must work with the nonlocal problem directly instead of transforming to a thin free boundary problem. We prove global Hölder continuity of minimizers for both the one- and two-phase problems. Next, for the one-phase problem, we show Hölder continuity at the free boundary with the optimal exponent . We also prove matching nondegeneracy estimates. A key novelty of our work is that all our findings hold without requiring any regularity assumptions on the kernel of the nonlocal operator. This characteristic makes them crucial in the development of a universal regularity theory for nonlocal free boundary problems.more » « lessFree, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available March 27, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Motivated by the open problem of large-data global existence for the non-cutoff Boltzmann equation, we introduce a model equation that in some sense disregards the anisotropy of the Boltzmann collision kernel. We refer to this model equation as isotropic Boltzmann by analogy with the isotropic Landau equation introduced by Krieger and Strain (2012) [35]. The collision operator of our isotropic Boltzmann model converges to the isotropic Landau collision operator under a scaling limit that is analogous to the grazing collisions limit connecting (true) Boltzmann with (true) Landau. Our main result is global existence for the isotropic Boltzmann equation in the space homogeneous case, for certain parts of the “very soft potentials” regime in which global existence is unknown for the space homogeneous Boltzmann equation. The proof strategy is inspired by the work of Gualdani and Guillen (2022) [22] on isotropic Landau, and makes use of recent progress on weighted fractional Hardy inequalities.more » « less
-
We prove the existence of an open set minimizing the first Dirichlet eigenvalue of an elliptic operator with bounded, measurable coefficients, over all open sets of a given measure. Our proof is based on a free boundary approach: we characterize the eigenfunction on the optimal set as the minimizer of a penalized functional, and derive openness of the optimal set as a consequence of a Hölder estimate for the eigenfunction. We also prove that the optimal eigenfunction grows at most linearly from the free boundary, i.e., it is Lipschitz continuous at free boundary points.more » « less
-
The purpose of this paper is to show how the combination of the well-known results for convergence to equilibrium and conditional regularity, in addition to a short-time existence result, lead to a quick proof of the existence of global smooth solutions for the non cutoff Boltzmann equation when the initial data is close to equilibrium. We include a short-time existence result for polynomially-weighted $$ L^\infty $$ initial data. From this, we deduce that if the initial data is sufficiently close to a Maxwellian in this norm, then a smooth solution exists globally in time.more » « less
An official website of the United States government
